微服务,分布式事务

单体架构(Monolithic架构)

所有的功能打包在一个 包里,基本没有外部依赖(除了容器),部署在一个JEE容器(Tomcat,JBoss,WebLogic)里,包含了 DO/DAO,Service,UI等所有逻辑

优点:

①开发简单,集中式管理

②基本不会重复开发

③功能都在本地,没有分布式的管理和调用消耗

缺点:

1、效率低:开发都在同一个项目改代码,相互等待,冲突不断

2、维护难:代码功功能耦合在一起,新人不知道何从下手

3、不灵活:构建时间长,任何小修改都要重构整个项目,耗时

4、稳定性差:一个微小的问题,都可能导致整个应用挂掉

5、扩展性不够:无法满足高并发下的业务需求

常见的系统架构遵循的三个标准和业务驱动力:

1、提高敏捷性:及时响应业务需求,促进企业发展

2、提升用户体验:提升用户体验,减少用户流失

3、降低成本:降低增加产品、客户或业务方案的成本

微服务架构:

目的:有效的拆分应用,实现敏捷开发和部署

关于微服务的一个形象表达:

X轴:运行多个负载均衡器之后的运行实例

Y轴:将应用进一步分解为微服务(分库)

Z轴:大数据量时,将服务分区(分表)

微服务的具体特征:

官方的定义:

1、一些列的独立的服务共同组成系统

2、单独部署,跑在自己的进程中,近几年流行的Docker,为微服务架构提供了有效的容器

3、每个服务为独立的业务开发

4、分布式管理

5、非常强调隔离性,假如微服务A想要读写微服务B的数据库,只能调用微服务B对外暴露的接口来完成。

大概的标准:

1、分布式服务组成的系统

2、按照业务,而不是技术来划分组织

3、做有生命的产品而不是项目

4、强服务个体和弱通信( Smart endpoints and dumb pipes )

5、自动化运维( DevOps )

6、高度容错性

7、快速演化和迭代

SOA和微服务的区别

1、SOA喜欢重用,微服务喜欢重写

SOA的主要目的是为了企业各个系统更加容易地融合在一起。 说到SOA不得不说ESB(EnterpriseService Bus)。 ESB是什么? 可以把ESB想象成一个连接所有企业级服务的脚手架。

通过service broker,它可以把不同数据格式或模型转成canonical格式,把XML的输入转成CSV传给legacy服务,把SOAP 1.1服务转成 SOAP 1.2等等。 它还可以把一个服务路由到另一个服务上,也可以集中化管理业务逻辑,规则和验证等等。 它还有一个重要功能是消息队列和事件驱动的消息传递,比如把JMS服务转化成SOAP协议。 各服务间可能有复杂的依赖关系。

微服务通常由重写一个模块开始。要把整个巨石型的应用重写是有很大的风险的,也不一定必要。我们向微服务迁移的时候通常从耦合度最低的模块或对扩展性要求最高的模块开始,

把它们一个一个剥离出来用敏捷地重写,可以尝试最新的技术和语言和框架,然 后单独布署。 它通常不依赖其他服务。微服务中常用的API Gateway的模式主要目的也不是重用代码,

而是减少客户端和服务间的往来。API gateway模式不等同与Facade模式,我们可以使用如future之类的调用,甚至返回不完整数据。

2、SOA喜欢水平服务,微服务喜欢垂直服务

SOA设计喜欢给服务分层(如Service Layers模式)。 我们常常见到一个Entity服务层的设计,美其名曰Data Access Layer。 这种设计要求所有的服务都通过这个Entity服务层来获取数据。 这种设计非常不灵活,比如每次数据层的改动都可能影响到所有业务层的服务。 而每个微服务通常有它自己独立的data store。 我们在拆分数据库时可以适当的做些去范式化(denormalization),让它不需要依赖其他服务的数据。

微服务通常是直接面对用户的,每个微服务通常直接为用户提供某个功能。 类似的功能可能针对手机有一个服务,针对机顶盒是另外一个服务。 在SOA设计模式中这种情况通常会用到MultiChannelEndpoint的模式返回一个大而全的结果兼顾到所有的客户端的需求。

3、SOA喜欢自上而下,微服务喜欢自下而上

SOA架构在设计开始时会先定义好服务合同(service contract)。 它喜欢集中管理所有的服务,包括集中管理业务逻辑,数据,流程,schema,等等。 它使用EnterpriseInventory和Service Composition等方法来集中管理服务。 SOA架构通常会预先把每个模块服务接口都定义好。 模块系统间的通讯必须遵守这些接口,各服务是针对他们的调用者。SOA架构适用于TOGAF之类的架构方法论。

微服务则敏捷得多。只要用户用得到,就先把这个服务挖出来。然后针对性的,快速确认业务需求,快速开发迭代。

总之,SOA架构强调的是异构系统之间的通信和解耦合,而微服务架构强调的是系统按业务边界做细粒度的拆分和部署

微服务落地存在的问题

虽然微服务现在如火如荼,但对其实践其实仍处于探索阶段。很多中小型互联网公司,鉴于经验、技术实力等问题,微服务落地比较困难。如著名架构师Chris Richardson所言,目前存在的主要困难有如下几方面:

1)单体应用拆分为分布式系统后,进程间的通讯机制和故障处理措施变的更加复杂。

2)系统微服务化后,一个看似简单的功能,内部可能需要调用多个服务并操作多个数据库实现,服务调用的分布式事务问题变的非常突出。

3)微服务数量众多,其测试、部署、监控等都变的更加困难。

随着RPC框架的成熟,第一个问题已经逐渐得到解决。例如dubbo可以支持多种通讯协议,springcloud可以非常好的支持restful调用。对于第三个问题,随着docker、devops技术的发展以及各公有云paas平台自动化运维工具的推出,微服务的测试、部署与运维会变得越来越容易。

而对于第二个问题,现在还没有通用方案很好的解决微服务产生的事务问题。分布式事务已经成为微服务落地最大的阻碍,也是最具挑战性的一个技术难题。

以下内容请参见参考资料

目录如下:

一、微服务架构介绍

二、出现和发展

三、传统开发模式和微服务的区别

四、微服务的具体特征

五、SOA和微服务的区别

六、如何具体实践微服务

七、常见的微服务设计模式和应用

八、微服务的优点和缺点

九、思考:意识的转变

十、参考资料和推荐阅读

参考资料:https://www.cnblogs.com/imyalost/p/6792724.html

分布式事务

事务:

事务提供一种机制将一个活动涉及的所有操作纳入到一个不可分割的执行单元,组成事务的所有操作只有在所有操作均能正常执行的情况下方能提交,只要其中任一操作执行失败,都将导致整个事务的回滚。简单地说,事务提供一种“要么什么都不做,要么做全套(All or Nothing)”机制。

数据库本地事务:ACID

A:原子性(Atomicity),一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。

C:一致性(Consistency),事务的一致性指的是在一个事务执行之前和执行之后数据库都必须处于一致性状态。

I:隔离性(Isolation),指的是在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间。

D:持久性(Durability),指的是只要事务成功结束,它对数据库所做的更新就必须永久保存下来。

分布式事务

分布式事务指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。简单的说,就是一次大的操作由不同的小操作组成,这些小的操作分布在不同的服务器上,且属于不同的应用,分布式事务需要保证这些小操作要么全部成功,要么全部失败。

即一个事务调用了不同服务器上的操作,那么它就成为了一个分布式事务,本质上来说,分布式事务就是为了保证不同数据库的数据一致性。

CAP

CAP 定理,又被叫作布鲁尔定理,1998年由加州大学的计算机科学家 Eric Brewer 提出。对于设计分布式系统(不仅仅是分布式事务)的架构师来说,CAP 就是入门理论。

C (一致性):对某个指定的客户端来说,读操作能返回最新的写操作。对于数据分布在不同节点上的数据来说,如果在某个节点更新了数据,那么在其他节点如果都能读取到这个最新的数据,那么就称为强一致,如果有某个节点没有读取到,那就是分布式不一致。

A (可用性):非故障的节点在合理的时间内返回合理的响应(不是错误和超时的响应)。可用性的两个关键一个是合理的时间,一个是合理的响应。合理的时间指的是请求不能无限被阻塞,应该在合理的时间给出返回。合理的响应指的是系统应该明确返回结果并且结果是正确的,这里的正确指的是比如应该返回 50,而不是返回 40。

P (分区容错性):当出现网络分区后,系统能够继续工作。打个比方,这里集群有多台机器,有台机器网络出现了问题,但是这个集群仍然可以正常工作。

Consistency 和 Availability 的矛盾

一致性和可用性,为什么不可能同时成立?答案很简单,因为可能通信失败(即出现分区容错)。

如果保证 G2 的一致性,那么 G1 必须在写操作时,锁定 G2 的读操作和写操作。只有数据同步后,才能重新开放读写。锁定期间,G2 不能读写,没有可用性不。

如果保证 G2 的可用性,那么势必不能锁定 G2,所以一致性不成立。

综上所述,G2 无法同时做到一致性和可用性。系统设计时只能选择一个目标。如果追求一致性,那么无法保证所有节点的可用性;如果追求所有节点的可用性,那就没法做到一致性。

BASE理论

BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的缩写。BASE理论是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结, 是基于CAP定理逐步演化而来的。BASE理论的核心思想是:即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。接下来看一下BASE中的三要素:

1、基本可用

基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性----注意,这绝不等价于系统不可用。比如:

(1)响应时间上的损失。正常情况下,一个在线搜索引擎需要在0.5秒之内返回给用户相应的查询结果,但由于出现故障,查询结果的响应时间增加了1~2秒

(2)系统功能上的损失:正常情况下,在一个电子商务网站上进行购物的时候,消费者几乎能够顺利完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面

2、软状态

软状态指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时

3、最终一致性

最终一致性强调的是所有的数据副本,在经过一段时间的同步之后,最终都能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统的事物ACID特性是相反的,它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性和BASE理论往往又会结合在一起。

分布式系统中的解决方案

一、两阶段提交(2PC)

和上一节中提到的数据库XA事务一样,两阶段提交就是使用XA协议的原理,我们可以从下面这个图的流程来很容易的看出中间的一些比如commit和abort的细节。

两阶段提交这种解决方案属于牺牲了一部分可用性来换取的一致性。在实现方面,在 .NET 中,可以借助 TransactionScop 提供的 API 来编程实现分布式系统中的两阶段提交,比如WCF中就有实现这部分功能。不过在多服务器之间,需要依赖于DTC来完成事务一致性,Windows下微软搞的有MSDTC服务,Linux下就比较悲剧了。

另外说一句,TransactionScop 默认不能用于异步方法之间事务一致,因为事务上下文是存储于当前线程中的,所以如果是在异步方法,需要显式的传递事务上下文。

优点: 尽量保证了数据的强一致,适合对数据强一致要求很高的关键领域。(其实也不能100%保证强一致)

缺点: 实现复杂,牺牲了可用性,对性能影响较大,不适合高并发高性能场景,如果分布式系统跨接口调用,目前 .NET 界还没有实现方案。

二、补偿事务(TCC)

TCC 其实就是采用的补偿机制,其核心思想是:针对每个操作,都要注册一个与其对应的确认和补偿(撤销)操作。它分为三个阶段:

Try 阶段主要是对业务系统做检测及资源预留

Confirm 阶段主要是对业务系统做确认提交,Try阶段执行成功并开始执行 Confirm阶段时,默认 Confirm阶段是不会出错的。即:只要Try成功,Confirm一定成功。

Cancel 阶段主要是在业务执行错误,需要回滚的状态下执行的业务取消,预留资源释放。

举个例子,假入 Bob 要向 Smith 转账,思路大概是:
我们有一个本地方法,里面依次调用
1、首先在 Try 阶段,要先调用远程接口把 Smith 和 Bob 的钱给冻结起来。
2、在 Confirm 阶段,执行远程调用的转账的操作,转账成功进行解冻。
3、如果第2步执行成功,那么转账成功,如果第二步执行失败,则调用远程冻结接口对应的解冻方法 (Cancel)。

优点: 跟2PC比起来,实现以及流程相对简单了一些,但数据的一致性比2PC也要差一些

缺点: 缺点还是比较明显的,在2,3步中都有可能失败。TCC属于应用层的一种补偿方式,所以需要程序员在实现的时候多写很多补偿的代码,在一些场景中,一些业务流程可能用TCC不太好定义及处理。

三、本地消息表(异步确保)

本地消息表这种实现方式应该是业界使用最多的,其核心思想是将分布式事务拆分成本地事务进行处理,这种思路是来源于ebay。我们可以从下面的流程图中看出其中的一些细节:

基本思路就是:

消息生产方,需要额外建一个消息表,并记录消息发送状态。消息表和业务数据要在一个事务里提交,也就是说他们要在一个数据库里面。然后消息会经过MQ发送到消息的消费方。如果消息发送失败,会进行重试发送。

消息消费方,需要处理这个消息,并完成自己的业务逻辑。此时如果本地事务处理成功,表明已经处理成功了,如果处理失败,那么就会重试执行。如果是业务上面的失败,可以给生产方发送一个业务补偿消息,通知生产方进行回滚等操作。

生产方和消费方定时扫描本地消息表,把还没处理完成的消息或者失败的消息再发送一遍。如果有靠谱的自动对账补账逻辑,这种方案还是非常实用的。

这种方案遵循BASE理论,采用的是最终一致性,笔者认为是这几种方案里面比较适合实际业务场景的,即不会出现像2PC那样复杂的实现(当调用链很长的时候,2PC的可用性是非常低的),也不会像TCC那样可能出现确认或者回滚不了的情况。

优点: 一种非常经典的实现,避免了分布式事务,实现了最终一致性。在 .NET中 有现成的解决方案。

缺点: 消息表会耦合到业务系统中,如果没有封装好的解决方案,会有很多杂活需要处理。

四、MQ 事务消息

有一些第三方的MQ是支持事务消息的,比如RocketMQ,他们支持事务消息的方式也是类似于采用的二阶段提交,但是市面上一些主流的MQ都是不支持事务消息的,比如 RabbitMQ 和 Kafka 都不支持。

以阿里的 RocketMQ 中间件为例,其思路大致为:

第一阶段Prepared消息,会拿到消息的地址。
第二阶段执行本地事务,第三阶段通过第一阶段拿到的地址去访问消息,并修改状态。

也就是说在业务方法内要想消息队列提交两次请求,一次发送消息和一次确认消息。如果确认消息发送失败了RocketMQ会定期扫描消息集群中的事务消息,这时候发现了Prepared消息,它会向消息发送者确认,所以生产方需要实现一个check接口,RocketMQ会根据发送端设置的策略来决定是回滚还是继续发送确认消息。这样就保证了消息发送与本地事务同时成功或同时失败。

遗憾的是,RocketMQ并没有 .NET 客户端。
优点:实现了最终一致性,不需要依赖本地数据库事务。
缺点:实现难度大,主流MQ不支持,没有.NET客户端,RocketMQ事务消息部分代码也未开源。

五、Sagas 事务模型

Saga事务模型又叫做长时间运行的事务(Long-running-transaction), 它是由普林斯顿大学的H.Garcia-Molina等人提出,它描述的是另外一种在没有两阶段提交的的情况下解决分布式系统中复杂的业务事务问题。你可以在这里看到 Sagas 相关论文。

我们这里说的是一种基于 Sagas 机制的工作流事务模型,这个模型的相关理论目前来说还是比较新的,以至于百度上几乎没有什么相关资料。

该模型其核心思想就是拆分分布式系统中的长事务为多个短事务,或者叫多个本地事务,然后由 Sagas 工作流引擎负责协调,如果整个流程正常结束,那么就算是业务成功完成,如果在这过程中实现失败,那么Sagas工作流引擎就会以相反的顺序调用补偿操作,重新进行业务回滚。

比如我们一次关于购买旅游套餐业务操作涉及到三个操作,他们分别是预定车辆,预定宾馆,预定机票,他们分别属于三个不同的远程接口。可能从我们程序的角度来说他们不属于一个事务,但是从业务角度来说是属于同一个事务的。

他们的执行顺序如图所示,所以当发生失败时,会依次进行取消的补偿操作。

参考资料:
https://www.jianshu.com/p/16b1baf015e8
https://www.cnblogs.com/savorboard/p/distributed-system-transaction-consistency.html


Comments are closed.